Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Chem Lett ; 20(6): 3883-3904, 2022.
Article in English | MEDLINE | ID: covidwho-2128753

ABSTRACT

Almost all aspects of society from food security to disease control and prevention have benefited from pharmaceutical and personal care products, yet these products are a major source of contamination that ends up in wastewater and ecosystems. This issue has been sharply accentuated during the coronavirus disease pandemic 2019 (COVID-19) due to the higher use of disinfectants and other products. Here we review pharmaceutical and personal care products with focus on their occurrence in the environment, detection, risk, and removal. Supplementary Information: The online version contains supplementary material available at 10.1007/s10311-022-01498-7.

2.
Toxics ; 9(11)2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1538524

ABSTRACT

The linear dose-response relationship has long been assumed in assessments of health risk from an incremental chemical emission relative to background emissions. In this study, we systematically examine the relevancy of such an assumption with real-world data. We used the reported emission data, as background emissions, from the 2017 U.S. National Emission Inventory for 95 organic chemicals to estimate the central tendencies of exposures of the general U.S. population. Previously published nonlinear dose-response relationships for chemicals were used to estimate health risk from exposure. We also explored and identified four intervals of exposure in which the nonlinear dose-response relationship may be linearly approximated with fixed slopes. Predicted rates of exposure to these 95 chemicals are all within the lowest of the four intervals and associated with low health risk. The health risk may be overestimated if a slope on the dose-response relationship extrapolated from toxicological assays based on high response rates is used for a marginal increase in emission not substantially higher than background emissions. To improve the confidence of human health risk estimates for chemicals, future efforts should focus on deriving a more accurate dose-response relationship at lower response rates and interface it with exposure assessments.

SELECTION OF CITATIONS
SEARCH DETAIL